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Laser power and energy measurements are commonly made in calorimeters operating in a constant
temperature environment. Calorimeters of this type are analyzed in terms of the first Jaw of thermodynamics
and the boundary value problem describing heat flow in the calorimeter. This theory of the measurement
suggests design features of the calorimeter, sources of error to be avoided in design and operation, and tests
to demonstiate experimentally the adequacy of the design. The analysis shows how ‘time-temperature
data can'be used to allow for the temperature gradient on the calorimeter and the heat exchange due to

transients in the temperature.

INTRODUCTION

Laser power and energy measurements are commonly
made in calerimeters operating in a constant-tempera-
ture environment.! Calorimeters of this type sub-
sequently called isoperibol calorimeters,? can be studied
in terms of the first law of thermodynamics and the
boundary value problem which describes heat flow in
the calorimeter. The resulting measurement theory
suggests possible sources of calorimetric errors, some
experimental tests for these errors, and design features
which reduce or eliminate these errors.

The usual theory of isoperibol calorimetry®* is
derived using the simplifying assumption that the
temperature of the calorimeter is uniform, which goes
contrary to the practice of waiting to make the final
temperature measurement until the observed tem-
perature is a single exponential function of time, that s,
until the higher order exponentials are negligible [see
LEq. (14) below]. White® considers “lags’” in the
calorimeter in an intuitive way and states that lag
effects are accounted for when the calorimeter is
calibrated. Our development shows that White's
statement must be qualified in important respects.

The heat flow problem leads to an expression for the
temperature which involves a series of exponential
functions of time. When only one of these exponentials
is significant, the observed temperature is a state
variable which is a measure of the internal energy of
the calorimeter. The heat exchange due to the other
exponentials can then be determined if the calorimeter
is properly calibrated. When the internal energy of the
calorimeter and the heat exchange are known, the
electromagnetic work done on the calorimeter by the
laser beam can be calculated by the first law. The
calculation, summarized in Eq. (20), is made in the
same manner prescribed by the usual simplified theory;

an energy equivalent determined in a calibration
experiment is multiplied by a “‘corrected temperature
rise.”” This temperature rise consists of the difference
hetween the final and initial temperatures, which must
be observed when the temperature is a single exponen-
tial function of time, plus the product of the “cooling
constant” and the integral of the temperature-time
curve. '

Equation (20) and the assumptions made in deriving
it form the basis for designing and testing isoperibol
calorimeters and for analyzing the data. The resemblance
of Eq. (20) to the results of the simple theory conceals

an important difference. The simple theory treats heat

flow as proportional to a measured temperature differ-
ence. If the region connecting the two temperatures
measured contains matter, such as a gas, solid supports
or electrical leads, then heat flow is proportional to
temperature difference only for a steady state tem-
perature distribution. By contrast, Eq. (20) holds for
the time-varying temperature distributiens actually
encountered.

In this analysis, it is shown that the energy equivalent
is dependent on the geometrical ‘distribution of the
power from the various sources. No systematic error
results if the heat generated anywhere inside the
calorimeter flows to the surface of the calorimeter by a
well-defined path so that the temperature measurement
properly accounts for the heat exchange. This “equiva-
lence of sources” should be designed into the calorimeter
and checked experimentally to demonstrate that this
systematic error is negligible. The experimental .check
requires calibration with several known sources which

generate heat in very different parts of the calorimeter—

two electrical heaters in different locations, for example.
A calibrating heater presents a special problem because
heat is generated in the current leads. For most laser
calorimeters it is probably adequate to make the
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electrical heater resistance large compared to the
resistance of the leads. If necessary, more rigorous tests
and mathematical analyses can be used.™$

An assumption in the analysisis that the temperature
of the surroundings is constant. Experimentally, the

question is what deviations from constancy can be’

tolerated for the accuracy required. The constant-
temperature enclosure for a laser calorimeter must have
an opening for the beam to enter, so that there is heat
exchange by radiation between the calorimeter and the
room. The room thus becomes part of the surroundings
where the temperature must be constant and tests are
required to show that it is sufficiently constant. Calorim-
eter design can reduce the effect of the room by placing
the calorimeter well away from the opening in the
enclosure to minimize the radiant heat exchange with
the room. A shutter which closes the opening in the
surroundings may have some application,

The effect of changes’in the temperature of the
surroundings can be checked experimentally by
deliberately changing it during a calibration experi-
ment. Its constancy is checked in the analysis of the
data[Eq. (14)7. .

Further checks on the operation of the calorimeter
are obtained frem the data analysis. The corrected
temperature rise, Eq. (20), must be constant for all
times after the temperature becomes a single exponential
function of time, Constancy of this quantity is a good
criterion for the single exponential condition. The
cooling constant obtained from Eq. (14) should occa-
siopally be checked for constancy for long times
following an energy input. Changes in this quantity
over an appreciable time imply deviations from the
assumed experimental conditions and possible sys-
tematic errors,

Extrapolation techniques for data analysis are
attractive because they simplify the analysis and
because, for some calorimeters, they may reduce errors
due to changes in'the temperature of the environment.
Extrapolation results in systematic errors when the
sources compared generate heat in different parts of the
calorimeter or as different functions of time, Both of
these effects can be checked experimentally with known
sources. If the geometric effect can be neglected, the
theory provides a basis for comparison of pulse and cw
energy inputs by extrapolation to the time of the pulse
-and to the midpoint of the cw input.

There are some problems which are common to all
‘measurements of laser energy and power. They deserve
mention here to emphasize that there is more to the
measurement than proper operation of the measuring
device. _

Our analysis requires that the composition of the
calorimeter remain unchanged. A change in composition
is an important consideratinn for high-power lasers,
which may melt or vaporize a surface, cause asurface to
oxidize, or excite an absorbing medium which decays
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slowly to the initial state. All of these changes in com-
position have appreciable heat effects associated with
them. These effects are very hard to find from analysis
of the calorimetric data and are preferably eliminated
by separate experiments.

There may be errorsin collecting the desired radiation
and converting it to heat. Some of the energy may be
reflected from the calorimeter without absorption, and,
in some calorimeters, loss by fluorescence might be
appreciable, Because of uncertainties in determining the
fraction lost, it seems prudent to design calorimeters
for absolute measurements to absorb nearly all the
incident radiation. An error of opposite sign is caused
by radiation received from extraneous sources, such as
a flash lamp for a ruby rod.

Thermal re-radiation from the calorimeter may be a
problem if the laser heats the surface of the calorimeter
appreciably. A partial solution is to disperse the beam
before absorption. In addition, the calorimeter can be
designed to absorb most of this thermal re-radiation.

TABLE OF SYMBOLS

a; constants which fit the eigenfunctions of the
boundary value problem Eq. (5) te the initial
condition

B a closed boundary surrounding the calorimeter
where the temperature is unchanged during the
experiment .

b;"  eigenvalues of the boundary value problem
Egs. (5)

¢ heat capacity per unit volume

Gy = f6¢1dV

S power generated in the calorimeter

g geometric distribution of a laser or electrical
source

g subscript refers to properties of the gas in the
calorimeter

h coefficient for heat transfer by radiation

k defined by Eq. (17)

n unit vector drawn perpendicularly outward

from a surface; 07/9n=VT-n
P position in an arbitrary coordinate system
P  power constant throughout the experiment

Q quantity of heat transferred to a thermodynamic
system
Qw heat exchange equal to —W,,

Q’ heat exchange in the transient problem. Q'=

S, 8" surfaces which exchange heat by radiation.
See Fig. 1

T temperature—may be thought of as the absolute
temperature

T, temperature distribution in the steady-state
due ta p.,

T =T-T,

T*  the observed temperature
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¢ time

U internal energy of a system

14 volume

w work done on a thermodynamic system
W. work done by constant power sources

W'  -work in the transient problem: W =W—-W,,

a; constants which fit the eigenfunctions to an
initial condition caused by unit work input with
the distribution g(P)

8 constant power input for a definite interval
v vector differential operator

A thermal conductivity

T

past time <¢

®; eigenfunctions.of the boundary volume problem
Eq. (5)

&*  value of the eigenfunction at the position of the

thermometer

APPLICATION OF THE FIRST LAW
TO CALORIMETRY

In general, a calorimetric measurement is a com-

parison of a known to an unknown energy, according to_

the first law of thermodynamics, Application of the
first law requires consideration of a boundary of the
system, the variables which specify the state of the
system, and evaluation of the heat and work quantities.

The boundary required by the first law is restricted
only in that it must enclose the two regions where the
energies to be compared are converted to heat. However,
the subsequent analysis in terms of experimental
quantities requires consideration of a boundary value
heat flow problem for which we take the boundary to
be the constant temperature surface which surrounds
an isuperibol calorimeter, The analysis is based on the
assumption that the temperature of this surface need
only be constant, but not necessarily uniform.

The first law equates the change in the internal énergy
AU of the system to the sum of the heat Q translerred
to the system and the work W done on the system

AU=Q+W. (1

The important work terms are the electrical work done
in a calibration and the electromagnetic work done by
the laser beam.

There is some difficulty in distinguishing work
quantities from heat quantities, In papers on cal-
orimetry, it is common to speak of the heat of stirring
and electrical heat, but, if the calorimeter is treated as a
thermodynamic system, it seems clear that both of
these are work quantities converted to heat inside the
system boundary. With Bridgman,” we have used the
term work for the radiation in the laser beam. This dis-
tinction from heat transfer by radiation is made on the
basis that there is no temperature difference associated
with the laser radiation.
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Equation (1) is the basic means of directly relating
the energy in a laser beam to known electrical quanti-
ties, which can be accurately expressed in joules, the
basic energy unit. To use Eq. (1) for calorimetry, one
must provide the experimental methods necessary to
specify the state of the system and to evaluate the heat
and work terms.

In the simple theory, which treats the calorimeter as
uniform in temperature, the specification of the state
variables is straightforward. The temperature of a
thermometer located anywhere in the calorimeter gives
the temperature of the system. The calorimeter is
usually operated at atmospheric pressure, and the
composition {or physical state) is either constant, as in
an electrical calibration, or the change in composition,
as in a chemical reaction, for example, is determined in
auxiliary experiments. The question of composition in
laser calorimeters is not a trivial one; the high power
densities available.can produce some rather spectacular
changes in composition or physical state,

The temperature in real isoperibol calorimeters is not
uniform, but the change in the internal energy of the
calorimeter may be expressed as the sum of the changes

-in subsystems so small that their temperatures are

uniform to any desired tolerance. The internal energy
of these subsystems also depends on their pressures due
to thermal stresses. The direct measurement of these
temperatures and pressures is manifestly impracticable.

‘What we seek is 4 relationship between the temperature

of each subsystem and the observed temperature. Such
a relationship will also specify a unique set of thermal
stresses, providing the temperature gradient is too
small to cause permanent deformations.

To develop the required temperature relationships,
which are also necessary to evaluate the heat exchange,
we proceed to a detailed consideration of the heat flow
problem.

THE HEAT FLOW PROBLEM

The essential parts of the measurement theory can be
deduced from a general heat flow problem which con-
siders both conduction and radiation in a region bounded
by a surface at constant, but not uniform, temperature.
Heat transfer by convection is excluded because it is
nonlinear in the temperature. From the design stand-
point, convection is not a problem if spaces and tem-
perature differences are kept small. We proceed to
formulate a heat flow problem describing a calorimeter
of an arbitrary shape consisting of various solids and
gaseous (or evacuated) regions.

The equation for the .conduction of heat in the
calorimeter can be written in the following quite
general form®*:

VA(P)VT(P, 1) =c(P)3T/8t—pu—g(P)f(D), (2)
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Tro. 1. Sketch to illustrate bounding and radiating surfaces.
The calorimeter is completely enclosed by a boundary B which is
at a constant temperature throughout the experiment. Part of B
(dotted line) is located somewhere in the air near the opening for
the laser beam. The surfaces S -and S’ are solid-gas interfaces
which exchange heat by radiation. They may coincide with B
in some areas. §’ is located inside the boundary B; S includes
surfaces in the room.

where T is the temperature, a function of position, P,
and time, ¢; A is the thermal conductivity, ¢ is the heat
capacity per unit volume, and p., is the constant power
devéloped per unit wvolume, all functions of position
only. The constant power p,, includes any nonthermal
background radiation through the opening for the laser
beam. In the last term f(¢) represents the total power
generated in the calorimeter and g(P) represents the
fraction generated at the position P.

The assumption that both A and ¢ are independent of
temperature requires that operation of the calorimeter
be restricted to temperature ranges so small that the
variations of A and ¢ with temperature can be neglected.

Heat is transferred simultaneously by radiation and
conduction across gas spaces. Radiation from a given
point in an enclosed region can reach any other point in
the region by multiple reflections. If absorption of
radiant energy by gas is negligible, it can be shown that
the radiant heat transfer between any pair of points-is
fixed by the geometrical arrangement of the space, the
optical properties of the surfaces, and the temperatures
at the points.®* Figure 1 is a sketch to illustrate the
various surfaces which exchange heat by radiation.
For small temperature differences we can express the
rate at which heat is radiated from an infinitesimal area
4S8’ on surface S’ to an area dS on surface § by the
expression (S, ") [T(S") —T(S)1dS"'dS, where T(S")
and T'(S) denote temperatures on surfaces S’ and §
respectively, The surface S’ includes all solid-gas
interfaces- inside the boundary B of the calorimeter
system. The surface S consists of .§/ and those surfaces
outside B which exchange heat by radiation through
the opening for the laser beam. If part of the boundary
B is a gas-solid interface, then that part of B is included
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in both S and §’. In that case, the temperature T'(B)
on the boundary will appear in Eq. (3a). In any case,
Eg. (3a) will be made homogeneous when the steady-

state solution is subtracted (see below). The total rate

at which heat is radiated from 45’ is obtained by
integrating over surface S. The resulting equation for
heat flux at a point on the surface §' is

~N(@T/dn) = —N,(8T,/om)
Ff1(S, SH[T(S)—T(S5)1dS, (3a)

where the temperature and thermal conductivity of the
gas is indicated by subscript g, and 6T/0% is the tem-
perature gradient in the direction of the outward drawn
normal to the surface. Physically, Eq. (3a) states that
the heat flux at a point on the solid surface is equal to
the heat flux into the gas plus the net heat radiated
from that point to all points en the surface S. The
equation governs heat exchange by radiation through
the opening for the laser beam from thut part of the
surface S outside the calorimeter boundary. In addition
to (3a) we require that the temperature be continuous
at the solid-gas interface

=T, (3b)

On the system boundary, B, the temperature takes on
the constant but nonuniform temperature of the sur-
roundings

T=T(B) on B. (3¢)

The laser calorimeter is not completely bounded by a
solid surface, because the surroundings must have an
opening for the laser beam, For this part of the boundary
we take a surface in the gas, which, together with the
solid surface, givesa closed boundary for the calorimeter
system. We specify that the temperature of the gas is
constant on this surface asin (3¢). Since there is radiant

heat transfer across this surface we require that all

temperatures T'(S) outside this boundary be constant.

The heat flow problem assumes the temperature of
this boundary is constant and the practical problem of
whether it is constant enough must be answered by
experiment, The obvious way to minimize the problem
of the opening is to put the calorimeter well inside the
constant temperature enclosure and to make the open-
ing as small as possible. This procedure is desirable in
any case to minimize gas conduction from the calorimeter
through the opening.

Note that a constant level of light reflected into the
calorimeter is included as part of the steady-state power.
Light assoclated with the operation of the laser
obviously must be excluded from the calorimeter, either
by suitable apertures or by locating the calorimeter a
good distance away. The light entering the calorimeter
from this source will decrease with distance.

In the absence of a calibrating or a laser input, the
temperature in the region bounded by B will eventually
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reach a steady-state determined by the temperature
distribution on B and any constant power sources, such
as light from the room or resistance thermometers. The
subscript « will be used to refer to the quantities
characteristic of this steady state; the temperature is
Tw(P), the total heat exchange is Q., and the total
work is W . In the steady state, the internal energy is
constant so from (1)

Qu=—Wa=—[podt. (4a)

The rate at which heat flows into the calorimeter is
the sum of conduction across the boundary of the system
and radiation through the opening for the laser beam.
The conduction term is just the integral of the heat flux
over the entire boundary Bj; the radiation term is the
double integral over the surface S’ inside the calorimeter
and the surface S, which is S’ plus the surfaces which
radiate into the calorimeter through the opening. This
rate of heat exchange is given by the equation

Q) dt=TN(T /1) dB

—JI0(S, SY[Tu(S) = Tw(S)JAS'dS. (4b)
Note that the radiation term has no net contribution
for the part of 5 which coincides with $’. To account
for an initial temperature distribution, the solution of
Eqgs. (2) and (3) is given by the superposition of T,

and a solution 7" of the following boundary value
problem

VAVT'= 63T’ /¢
—\(3T"/3m) =—), (3T, /om)
+Jh(S, ST (S)—T'(8)JdS,on S. (5b)

In (5b), 7/(S) =0 when S coincides with B or when §
is a surface exchanging heat by radiation through the
opening for the laser beam

(52)

T'=T); (5¢)
T'=0on B. (5d)

The initial condition is
T'=T(P, 0) ~T. (5e)

The problem is homogeneous and can be solved by
separation of variables to give a solution of the form
B(P)e®, A constant ¢ times the product is alse a
solution. The separation constant b can have different
values so that a general solution to the homogeneous
problem has the form

T’= Za@;(P) exp(—bgt), (6)
where the a; are chosen to represent the temperature
distribution 7" at {=0.

_ By a procedure analogous to that used by Boley and

Weiner,? it can be shown from Egs. (5) that the b; are
-real and greater than zero, and that the ®; corresponding
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to different b; are orthogonal or, in case of degeneracy,
have been orthogonalized. We assume that they con-
stitute a complete set and that there is only one &
corresponding to by

RATING PERIOD AND INTERNAL ENERGY

In time, it is observed, that the temperature is a
single exponential function of time; i.e., only one
exponential in Eq. (6) is significant

T— T,, :—‘alq)l €xXp ( bl blt) B (7&)

When this equation holds, we will say that the cal-
orimeter is in a rating period. The same equation
applies to the observed temperature T which is just
the value of the temperature at the point where the
measurement is made. If the thermometer occupies an
appreciable volume, then 7% is the average over the
volume of the sensitive part of the thermometer. For
small temperature differences, the response of the
thermometer is probably sufficiently linear that the
observed temperature is also the average temperature
of the sensing element. For the observed temperature,
(7a) is written

T*—To*=a®* exp(—bi), (7b)

where ¢* may represent an average value for the
thermometer.

When the temperature as a function ‘of position
obeys (7a), it can be written in terms of the observed
temperature. Division by (7b) gives the time-inde-
pendent relationship

T—T,=(T*~ Tw*)@x7f1>x*- (8)

This equation relates the temperature anywhere in the
calorimetric system to the observed temperaturc. The
observed temperature is therefore a state variable when
it is a-single exponential function of time; that is, when
the calorimeter is in a rating period.

Using the approximation made in Eq. (2) that the

" heat capacity is a function of position only, the change

in the internal energy of the calorimeter can be written
for two temperature distributions Ty and Ty at the tir
1 and 7, respectively

AU= fb‘[Tz(P, tz_) "*T],(P, tlj ]dV. (9)

If we define a weighted heat capacity Ci= [¢®:dV, then,
during rating periods, (8) applies and (9) can be
written

AU =Cy( T~ Ti*) [@*. (10)

Heal enters the calorimeter by conduction at the
boundary and by radiation through the opening for the
laser beam. The conduction is the product of the thermal
conductivity and the temperature gradient normal to
the surface intégrated over the conducting part of the
surface B, and the radiation is proportional to the
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temperature difference, analogous to the integral in
(3a), integrated over the radiating surfaces S and §'.
The heat entering the calorimeter due to 7" is

dQ'/di= (dQ/dt) — (dQu/di)

=[(\OT'/on)dB~ [ [RT'(S"}dSdS’, (11)
where dQ,/di is taken from Eq. (4b). Defining the
quantities .

A= [N(0%./9n)dB— [ [hD;(S5"}dSdS’, (12)

and substituting from (6), Eq. (11) can be written
4Q"/di=7"a:A; exp(—bi).

For a rating period only the first term is significant.
By using (7b) this term can be written in terms of the
observed temperature

dQ'[dt= A (T*—T*) /®*.
Differentiating (10) and using (7b) we obtain
dAU/dt= C1(dT*/dt) /@1*= ‘—"Cllh(T*— _Tw*) /‘1’1*.

During rating periods there are no active sources, so
from Eq. (1) dAU/di=dQ'/di. These three relation-
ships give

—b1C1=A1, (13)

which defines the constant b;—traditionally called the
cooling constant—as the ratio of a heat transfer coeffi-
cient to the weighted heat capacity. The constant, by,
is determined experimentally using the following rela-
tionship derived from (7a):

AT/t=—b(T—T.,). (14)

This relation holds throughout the calorimeter, so that
the cooling constant is independent of the location of
the thermometer.

THE HEAT EXCHANGE

Equation (1) requires that the heat exchange be
evaluated for the entire length of the experiment, which
" extends through the main part of the experiment when
the ohsérved temperature is zof a measure of the in-
ternal energy of the system. Since the heat exchange
depends on the temperature gradient throughout the
experiment, the expression for the temperature must be
developed before the heat exchange can be considered.
The temperature will be expressed as the superposition
(sum) of the temperature due to the initial condition
and the temperature due to a heat source in the cal-
orimeter. The experiment bégins with ‘the calorimecter
in a rating period, so that the initia] temperature dis-
tribution is described by the first term in the series (6).
The temperature due to a heat source can also be stated
in terms of an initial value problem. For concreteness,
suppose that, at a time r, one joule of electric energy is
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converted to heat in the heater wire in a negligible

length of time. The temperature of the heater wire will
be raised and the initial valye for the temperature for
this problem will depend on the location g(P) of the
wire and its heat capacity ¢(P). This problem is the
same as the initial value problem (5) but with a time
scale beginning at time ~ and the initial temperature
distribution g(P) /c(P). The constants a; are chosen to
represent this initial temperature distribution at time
t=7. An input f(r)dr J at time 7 will produce a pro-
portionate temperature rise and the total effect of all
inputs f() can be obtained by integration over the
past time 7 to give the following equation:.

T"'TW= P, exp(-blt)
+ / tf(r)}:a_@,- exp[—b;(t—r) Jdr. (15)
0

In (15) f(#) is the time dependence of the source; the
geometric dependence g(P) is represented by the
products o;®;. The heat exchange is given by integrating
(11) substituting I'=7T-—T, from (15) using the
definitions (12); for a time #in the final rating period
when only the first exponential is significant

Q’= alAlbr‘D— exp(-b1t) ] V

“+ oAbt f‘f(r) {1—exp[—b(t—7) J}dr

+ Takst [ fr (16)
L] [}

The integral of f(7)dr is just the total work W’ done by
the heater. If (15) isintegrated over the same time and
a constant is defined by

k= Ea;b{’l (Ar‘— Al‘I’i*/q)I*) ( 17)
=2

then, by comparison with (16}, the heat exchange can
be written in terms of the observed temperature

/_él_ ‘ e * 7 .
Q'= 2 fo (T*=T ) di+-EW'. (18)

THE MEASUREMENT THEORY.
EQUIVALENT SOURCES

Since AU =Q'+- W, substitution from (10) and (18)
gives the equation

Io 7 A [t
W= clb—l* (T T~ ;}I;L (T*—T*)dt— kW,

(19)
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Using (13) we can put (19) in the usual form of an
energy equivalent multiplying a corrected temperature
rise

W= ( (l—f—k))[ 11*+blfo (T*——T,,*')dt].

(20)

Several points about this equation deserve emphasis:
(1) The corrected temperature rise does not depend on
the temperature 77 heing constant; it may be a single
exponential function of time. (2) The energy equivalent
depends on the position of the thermometer through
&;* and k. (3) The energy equivalent depends on the
spatial distribution g() through the «;in k.

One feature of Eq. (20) which is useful experimentally
is that the corrected temperature rise must be a con-

stant when the temperature is a single exponential .

function of.time, This constancy can be shown by
putting T*—T*=(T1*—T.*) exp(—bit) and inte-
grating from (77%,0) to (T%% ). Constancy of the
corrected temperature rise is therefore a criterion for the
single exponential condition.

Equation (20) represents a linear theory—heat
capacity and thermal conductivity independent of
temperature—and should be adequate for the accuracy
required in laser calorimetry. It is a complete measure-
ment theory in that the basic physical law has been
‘reduced to a set of observations to be made in the
laboratory. The observed temperature T# is obtained
by some suitable thermometer, & and T,* from two
rate observations using (14), and the quantity
Ci[®*(14%) T from a known electrical or laser work
quantity, These known quantities can then be used in a
determination of an unknown quantity, with the most
important restriction that the two work quantities have
the same relative geometric distribution in the calorim-
cter, as expressed by the a; in (15). Since the com-
parison is between an electric heater and a laser beam,
this restriction would destroy the usefulness of the
calorimeter but for the idea of equivalent sources.

Equivalent sources are necessary only for evaluating
the heat exchange. The change in internal energy,
measured in rating periods, is independent of the.loca-
tion of the source. It may be inferred that calorimeters
are more accurate if the change in internal energy AU
islarge compared to the heat exchange.

Equivalent sources have been discussed in connection
with adiabatic calorimeters.5% Ideally, the design to

make sources equivalent is to force heat from any
source inside the calorimeter to reach the surface, where
heat is exchanged with the surroundings, at only one
point (or through a region of infinite thermal con-
ductivity), The point (or region) ean then be treated
as a secondary source of heat for heat exchange («; is
the same for all sources) and the theory outlined above
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T16. 2. Temperature-time curve for a one-minute electrical in-
put in an isoperibol calorimeter. The single exponentxal part of
the curve is extrapolated to 2=0(-) or to £=0.5 min to account
approximately for the heat exchange.

evaluates the heat exchange. This idea is especially
useful because it can be demonstrated experimentally
by electric heaters at different locations and thus,
becomes important where the accuracy of measure-
ments may be questioned. The temperature measure-
ment for evaluating the heat exchange must be meas-
ured outside of the secondary source.

Laser beams can also be used to demonstrate the
equivalence of sources if the fraction of the beam
absorbed does not vary with position. The meaning of a
negative result is not clear cut. It may imply either
dependence of the heat exchange or the fraction ab-

sorbed on the location of the source, or some com-

bination.

An important advantage of the secondary source is
that the heat capacity and thermal conductivity inside
the secondary source need not be independent of the
temperature except during the rating periods. If the
laser vaporizes the inner surface—a process outside the
scope of our linear equations—the measurement may
still be valid if the vapor is redeposited inside the
calorimeter in its original state.

Thermal radiation from surfaces inside the calorlm—
eter heated by the laser beam cannot be handled readily
by the equivalent source technique because the sur-
faces are heated in a way different from the calibration
experiment. The error can be made small by avoiding
excessive heating of the surface absorbing the beam and
by having the smallest possible solid angle for re-
radiation to escape from the calorimeter.

The linear theory of (20) may not be adequate for
problems requiring high accuracy, although it appar-
ently applies to the very accurate work done in stirred
water calorimeters.!*®* In a nonlinear problem the

linear theory might be used to account for a emall heat

exchange and for a small deviation of the calorimeter
temperature from uniformity in the rating periods, but
the nonlinear relations of the internal energy to the
observed temperature could be determined by scveral
calibration experiments over different parts of the
temperature range.
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EXTRAPOLATION TECHNIQUES

Extrapolation techniques are sometimes used to
analyze data in isoperibol calorimetry. A typical tem-
perature-time curve-is shown in Fig. 2 for a calibration
experiment with an electrical input lasting one minute.
There is obviously a difference between extrapolation
to zero time and extrapolation to the mid-point of the
electrical input interval. In general, neither extrapola-
tion provides a reliable evaluation of the integral
in (15).

The extrapolation technique is nevertheless useful in
certain circumstances, but it must not be applied
indiscriminately. The first assumption in comparing
two sources by extrapolation methods is that they have
‘the same or equivalent geometrical distribution in the

calorimeter; that is, they have the same a; in (15).

This point can be investigated experimentally.

We now consider a ew input, starting from a constant
temperature Ty,

f(r)=8 for 0<i<h,

f(r)=0 for (<0>h.
The corrected temperature rise AT obtained by (20) is

AT=b3 0@ [f(r)dr. (21)

In this case the integral is B4. For the temperature
‘during the final rating period we obtain

T—To=(Bh)(cr®1/bitr) exp(—but) [exp(batr)—1].  (22)

Extrapolation to{=0 to get To— T, shows a dependence
on #, the duration of the input. Of course, this de-
pendence can be removed by applying a correction,
since hoth & and # are known. Comparison of (21)
and (22) shows that extrapolation does not acceunt
for the heat exchange for the higher order terms, but if
~the two sources have sufficiently similar geometrical
distributions, this difference will be constant and can
be evaluated and then used in-subsequent data analyses,
To estimate the magnitude of the dependence on the
duration of the input, the exponential i§ expanded to
give

To—To=Phon® (1-+b1f1/ 24+ +). (23)

For a calorimeter having a “cooling constant” ;=

E. D. WEST AND XK. L. CHURNEY

1/300 sec™, the comparison of a pulse (4#=0) and a
30-second cw input is wrong by 5%. More accurate
comparisons can be made by extrapolation of the
exponential to #=#/2. Substitution of this value in
(22) and expansion of the exponentials gives

AT= (Bt) aa®r(1—3(batr) +5 (br%%) — +++)

X (14+-5(0h) + 3000 ++0). (24
Moultiplication and cancellation in (24) gives
AT= (ﬁh) a1‘1>1( 1+b12112/24+ .o -) . (25)

Extrapolation to t=4#/2 therefore accounts for most of
the dependence on the duration of the power input. It
still does not account for heat exchange due to the
terms which decay more rapidly.
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